Every year on February 11th, we are reminded of the essential role that women and girls play in the field of science. This International Day of Women and Girls in Science brings a flurry of messages to our inboxes and social feeds, highlighting the invaluable contributions of female scientists. At DT-GEO, we cherish these contributions deeply. However, we believe that the recognition and celebration of female scientists should not be limited to a single day.

An Ongoing Commitment to Equality and Diversity

Understanding the importance of continuous acknowledgment, the DT-GEO Equality and Diversity Committee is taking a step further. Following the International Day of Women and Girls in Science, we are excited to announce the launch of a brief survey. This initiative invites you, our valued community, to share your stories and experiences with female scientific pioneers. We are looking to spotlight those whose work has not only advanced the field of geophysics and supercomputing but has also paved the way for future generations. Whether these pioneers are part of the DT-GEO project or shine in other areas, whether you’ve met them personally or have been inspired from afar, we want to hear from you.

Your Stories Matter

By participating in this survey, you’re not just sharing a story; you’re contributing to a larger narrative that celebrates and recognizes the critical role women play in science. These stories are not merely tales of individual achievement but are testaments to the collective progress we aim to foster within our community and beyond. They remind us that diversity in science not only enriches our research but also deepens our understanding of the world.

Join Us in This Initiative

In a month, we will be sharing your submissions and our collective calls to action on the DT-GEO official website. This is more than an invitation to contribute; it’s a call to join us in reinforcing our commitment to inclusivity and diversity in the scientific community. Your story could be the spark that inspires others, the recognition that empowers a future leader, or the acknowledgment that celebrates unsung heroes.

We warmly encourage you to share with us a story about a woman in science whose work has significantly impacted you or the field. Let’s ensure that the achievements of women in science are celebrated every day, not just once a year.

Share your story now and be a part of this pivotal movement towards a more inclusive and diverse scientific world.


How Does Thermal Pressurization of Pore Fluids Affect 3D Strike‐Slip Earthquake Dynamics and Ground Motions?

Article in journal
Journal of Geophysical Research: Solid Earth
Li, Bo and Gabriel, Alice-Agnes and Ulrich, Thomas and Abril, Claudia and Halldorsson, Benedikt
Li, B., Gabriel, A.-A., Ulrich, T., Abril, C., & Halldorsson, B. (2023). Dynamic rupture models, fault interaction and ground motion simulations for the segmented Húsavík-Flatey Fault Zone, Northern Iceland. Journal of Geophysical Research: Solid Earth, 128, e2022JB025886. https://doi.org/10.1029/2022JB025886

The Húsavík-Flatey Fault Zone (HFFZ) is the largest strike-slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics-based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3-D multi-fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo-bathymetry, 3-D subsurface velocity, viscoelastic attenuation, and off-fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near-field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near-field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude-consistent and in good agreement with the latest regional empirical ground motion models. However, physics-based ground motion variability changes considerably with fault-distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics-based near-fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike-slip fault systems, such as the HFFZ.