EMPOWERING WOMEN IN SCIENCE: SHARE YOUR STORY WITH DT-GEO

Every year on February 11th, we are reminded of the essential role that women and girls play in the field of science. This International Day of Women and Girls in Science brings a flurry of messages to our inboxes and social feeds, highlighting the invaluable contributions of female scientists. At DT-GEO, we cherish these contributions deeply. However, we believe that the recognition and celebration of female scientists should not be limited to a single day.

An Ongoing Commitment to Equality and Diversity

Understanding the importance of continuous acknowledgment, the DT-GEO Equality and Diversity Committee is taking a step further. Following the International Day of Women and Girls in Science, we are excited to announce the launch of a brief survey. This initiative invites you, our valued community, to share your stories and experiences with female scientific pioneers. We are looking to spotlight those whose work has not only advanced the field of geophysics and supercomputing but has also paved the way for future generations. Whether these pioneers are part of the DT-GEO project or shine in other areas, whether you’ve met them personally or have been inspired from afar, we want to hear from you.

Your Stories Matter


By participating in this survey, you’re not just sharing a story; you’re contributing to a larger narrative that celebrates and recognizes the critical role women play in science. These stories are not merely tales of individual achievement but are testaments to the collective progress we aim to foster within our community and beyond. They remind us that diversity in science not only enriches our research but also deepens our understanding of the world.

Join Us in This Initiative


In a month, we will be sharing your submissions and our collective calls to action on the DT-GEO official website. This is more than an invitation to contribute; it’s a call to join us in reinforcing our commitment to inclusivity and diversity in the scientific community. Your story could be the spark that inspires others, the recognition that empowers a future leader, or the acknowledgment that celebrates unsung heroes.

We warmly encourage you to share with us a story about a woman in science whose work has significantly impacted you or the field. Let’s ensure that the achievements of women in science are celebrated every day, not just once a year.

Share your story now and be a part of this pivotal movement towards a more inclusive and diverse scientific world.

 

Complex strike-slip faulting during the 2021 Mw7.4 Maduo earthquake

TYPE OF PUBLICATION
Article in journal
 
YEAR OF PUBLICATION
2023
 
PUBLISHER
Nature
 
LINK TO THE PUBLICATION
https://www.nature.com/articles/s43247-023-00980-6#citeas
 
DOI
 
AUTHORS
Guoguang Wei, Kejie Chen, Mingzhe Lyu, Wenzheng Gong, Luca Dal Zilio, Lingling Ye & Hongwei Tu
 
CITATION
Wei, G., Chen, K., Lyu, M. et al. Complex strike-slip faulting during the 2021 Mw7.4 Maduo earthquake. Commun Earth Environ 4, 319 (2023). https://doi.org/10.1038/s43247-023-00980-6
 
SHORT SUMMARY
Fault geometry is an essential component for understanding earthquake genesis and dynamic rupture propagation. Here we employed space-based geodetic observations and geological survey, adopting a fully Bayesian approach, to probabilistically estimate the fault geometry of the 2021 Mw7.4 Maduo earthquake. The fault is predominantly characterized by strike-slip motions with three main geometry irregularities, reflecting the segmented pattern of the earthquake rupture. On the west side of the epicenter, the fault exhibits north-dipping angles (75–81°), whereas on the east side, it shows sub-vertical angles (82–87°). For the southeast branch, geodetic inversion reveals an overall shallow-dipping (44 ± 5°) faulting, yet further segmentation of the branch in the model and analysis of aftershock mechnism indicate that the dip of the branch faults may vary between vertical and shallow angles. This finding warrants confirmation through future underground observation data.These results suggest that strike-slip faulting could occur on unsuitably orientated planes during any seismic event.
 
 

More
EVENTS